Меню

Построить графики функций заданных следующими алгоритмами

Полное исследование функции и построение графика.

Стоит задача: провести полное исследование функции и построить ее график .

Каждый студент прошел через подобные задачи.

Дальнейшее изложение предполагает хорошее знание свойств и графиков основных элементарных функций. Рекомендуем обращаться к этому разделу при возникновении вопросов.

Алгоритм исследования функции состоит из следующих шагов.

Нахождение области определения функции.

Это очень важный шаг исследования функции, так как все дальнейшие действия будут проводиться на области определения.

В нашем примере нужно найти нули знаменателя и исключить их из области действительных чисел.

(В других примерах могут быть корни, логарифмы и т.п. Напомним, что в этих случаях область определения ищется следующим образом:
для корня четной степени, например, — область определения находится из неравенства ;
для логарифма — область определения находится из неравенства ).

Исследование поведения функции на границе области определения, нахождение вертикальных асимптот.

На границах области определения функция имеет вертикальные асимптоты, если односторонние пределы функции в этих граничных точках бесконечны.

В нашем примере граничными точками области определения являются .

Исследуем поведение функции при приближении к этим точкам слева и справа, для чего найдем односторонние пределы:

Так как односторонние пределы бесконечны, то прямые являются вертикальными асимптотами графика.

Исследование функции на четность или нечетность.

Функция является четной, если . Четность функции указывает на симметрию графика относительно оси ординат.

Функция является нечетной, если . Нечетность функции указывает на симметрию графика относительно начала координат.

Если же ни одно из равенств не выполняется, то перед нами функция общего вида.

Нахождение промежутков возрастания и убывания функции, точек экстремума.

Промежутки возрастания и убывания являются решениями неравенств и соответственно.

Точки, в которых производная обращается в ноль, называют стационарными.

Читайте также:  Как правильно построить сауну в уже имеющемся помещении

Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.

Мы будем включать критические точки в промежутки возрастания и убывания, если они принадлежат области определения функции.

Находим производную на области определения (при возникновении сложностей, смотрите раздел дифференцирование функции, нахождение производной).

Наносим эти точки на числовую ось и определяем знак производной внутри каждого полученного промежутка. Как вариант, можно взять любую точку из промежутка и вычислить значение производной в этой точке. Если значение положительное, то ставим плюсик над этим промежутком и переходим к следующему, если отрицательное, то ставим минус и т.д. К примеру, , следовательно, над первым слева интервалом ставим плюс.

Схематично плюсами / минусами отмечены промежутки где производная положительна / отрицательна. Возрастающие / убывающие стрелочки показывают направление возрастания / убывания.

Точками экстремума функции являются точки, в которых функция определена и проходя через которые производная меняет знак.

Нахождение промежутков выпуклости и вогнутости функции и точек перегиба.

Промежутки вогнутости и выпуклости функции находятся при решениями неравенств и соответственно.

Иногда вогнутость называют выпуклостью вниз, а выпуклость – выпуклостью вверх.

Здесь также справедливы замечания, подобные замечаниям из пункта про промежутки возрастания и убывания.

Находим вторую производную на области определения.

Далее ищем нули числителя и знаменателя.

В нашем примере нулей числителя нет, нули знаменателя .

Наносим эти точки на числовую ось и определяем знак второй производной внутри каждого полученного промежутка.

Другими словами, точками перегиба могут являться точки, проходя через которые вторая производная меняет знак, в самих точках либо равна нулю, либо не существует, но эти точки входят в область определения функции.

В нашем примере точек перегиба нет, так как вторая производная меняет знак проходя через точки , а они не входят в область определения функции.

Читайте также:  Майнкрафт кто выше построит столб

Нахождение горизонтальных и наклонных асимптот.

Горизонтальные или наклонные асимптоты следует искать лишь тогда, когда функция определена на бесконечности.

Наклонные асимптоты ищутся в виде прямых , где и .

Если k=0 и b не равно бесконечности, то наклонная асимптота станет горизонтальной.

Кто такие вообще эти асимптоты?

Это такие линии, к которым приближается график функции на бесконечности. Таким образом, они очень помогают при построении графика функции.

Если горизонтальных или наклонных асимптот нет, но функция определена на плюс бесконечности и (или) минус бесконечности, то следует вычислить предел функции на плюс бесконечности и (или) минус бесконечности, чтобы иметь представление о поведении графика функции.

Для нашего примера

— горизонтальная асимптота.

На этом с исследование функции завершается, переходим к построению графика.

Вычисляем значения функции в промежуточных точках.

Для более точного построения графика рекомендуем найти несколько значений функции в промежуточных точках (то есть в любых точках из области определения функции).

Сначала строим асимптоты, наносим точки локальных максимумов и минимумов функции, точки перегиба и промежуточные точки. Для удобства построения графика можно нанести и схематическое обозначение промежутков возрастания, убывания, выпуклости и вогнутости, не зря же мы проводили исследование функции =).

Осталось провести линии графика через отмеченные точки, приближая к асимптотам и следуя стрелочкам.

Этим шедевром изобразительного искусства задача полного исследования функции и построения графика закончена.

Графики некоторых элементарных функций можно строить с использованием геометрических преобразований графиков основных элементарных функций.

Источник

Adblock
detector