Меню

Построить векторную диаграмму для цепи переменного тока

Как построить векторную диаграмму токов и напряжений

Векторные диаграммы — метод графического расчета напряжений и токов в цепях переменного тока, в которых переменные напряжения и токи символически (условно) изображаются с помощью векторов.

Поэтому всякое переменное напряжение (или переменный ток), меняющееся по синусоидальному закону, можно изображать с помощью такого вектора, вращающегося с угловой скоростью, равной угловой частоте изображаемого тока, причем длина вектора в определенном масштабе изображает амплитуду напряжения, а угол — начальную фазу этого напряжения.

Если рассмотреть электрическую цепь, состоящую из последовательно соединенных источника переменного тока, резистора, индуктивности и конденсатора, где U – мгновенное значение переменного напряжения, а i – это ток в текущий момент времени, причем U изменяется по синусоидальному (косинусоидальному) закону, то для тока можно записать:

Согласно закону сохранения заряда, в любой момент времени ток в цепи имеет одно и то же значение. Следовательно на каждом элементе будет падать напряжение: UR– на активном сопротивлении, UC – на конденсаторе, и UL – на индуктивности. Согласно второму правилу Кирхгофа, напряжение источника будет равно сумме падений напряжений на элементах цепи, и мы имеем право записать:

Заметим, что согласно закону Ома: I = U/R, и тогда U = I*R. Для активного сопротивления значение R определяется исключительно свойствами проводника, оно не зависит ни от тока, ни от момента времени, следовательно ток совпадает по фазе с напряжением, и можно записать:

Можно записать теперь сумму падений напряжений, но в общем виде для приложенного к цепи напряжения можно записать:

Видно, что здесь имеет место некий сдвиг фаз, связанный с реактивной составляющей общего сопротивления цепи при протекании по ней переменного тока.

Поскольку в цепях переменного тока и ток и напряжение изменяются по закону косинуса, причем мгновенные значения отличаются между собой лишь фазой, то физики придумали в математических расчетах рассматривать токи и напряжения в цепях переменного тока как векторы, поскольку тригонометрические функции можно описать через векторы. Итак, запишем напряжения в виде векторов:

Читайте также:  Как построить печь для плавки меди

Используя метод векторных диаграмм, можно вывести, например, закон Ома для данной последовательной цепи в условиях протекания по ней переменного тока.

Согласно закону сохранения электрического заряда, в любой момент времени ток во всех частях данной цепи одинаков, так отложим же векторы токов, построим векторную диаграмму токов:

Пусть в направлении оси Х будет отложен ток Im – амплитудное значение тока в цепи. Напряжение на активном сопротивлении совпадает по фазе с током, значит эти векторы будут сонаправленными, отложим их из одной точки.

Напряжение на конденсаторе отстает на Пи/2 от тока, следовательно откладываем его под прямым углом вниз, перпендикулярно вектору напряжения на активном сопротивлении.

Напряжение на катушке опережает на Пи /2 ток, следовательно откладываем его под прямым углом вверх, перпендикулярно вектору напряжения на активном сопротивлении. Допустим, что для нашего примера UL>UC.

Поскольку мы имеем дело с векторным уравнением, сложим векторы напряжений на реактивных элементах, и получим разницу. Она будет для нашего примера (мы приняли что UL>UC) направлена вверх.

Прибавим теперь вектор напряжения на активном сопротивлении, и получим, по правилу векторного сложения, вектор суммарного напряжения. Так как брали максимальные значения, то и получим вектор амплитудного значения общего напряжения.

Так как ток менялся по закону косинуса, то напряжение тоже меняется по закону косинуса, но со сдвигом фаз. Между током и напряжением есть постоянный сдвиг фаз.

Запишем закон Ома для общего сопротивления Z (импеданса):

Из векторных изображений по Теореме Пифагора можем записать:

После элементарных преобразований получим выражение для полного сопротивления Z цепи переменного тока, состоящей из R, C и L:

Тогда получим выражение для закона Ома для цепи переменного тока:

Читайте также:  Построить дом внутри старого деревянного дома

Заметим, что наибольшее значение тока получатся в цепи при резонансе в условиях, когда:

Косинус фи из наших геометрических построений получается:

Источник

Построение векторных диаграмм при расчёте электрических цепей

В программе онлайн-расчёта электрических цепей появился функционал построения векторных диаграмм.

После завершения расчёта программа автоматически формирует векторные диаграммы токов и напряжений. Векторные диаграммы строятся согласно методике, приведённой здесь. Векторные диаграммы токов доступны только для многоконтурных схем.

Все векторные диаграммы токов и все векторные диаграммы напряжений строятся на своих графиках. Внизу каждого графика доступны чекбоксы для отображения или скрытия векторных диаграмм для определённых узлов или контуров.

Пример векторных диаграмм токов и напряжений

Исходные данные и схема:

После нажатия кнопки «Расчёт» формируется решение задачи:

Рассчитаем схему по законам Кирхгофа.

В данной схеме: узлов − 2, ветвей − 3, независимых контуров − 2.

Произвольно зададим направления токов в ветвях и направления обхода контуров.
Принятые направления токов:

Принятые направления обхода контуров:

Составим уравнения по первому закону Кирхгофа. При составлении уравнений «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» − со знаком «−».

Составим уравнение для узла №1:

Составим уравнения по второму закону Кирхгофа. При составлении уравнений положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура.

Составим уравнение для контура №1:

$$ R_<1>\cdot \underline_<1>-(R_<2>-jX_)\cdot \underline_<2>=\underline_<1>$$

Составим уравнение для контура №2:

Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми токами. Система уравнений по законам Кирхгофа для исходной цепи выглядит следующим образом:

Читайте также:  Как построить блок схему в visio

$$ \begin\underline_ <1>+ \underline_<2>— \underline_ <3>= 0 \\ R_<1>\cdot \underline_<1>-(R_<2>-jX_)\cdot \underline_ <2>= \underline_ <1>\\ (R_<2>-jX_)\cdot \underline_<2>+jX_\cdot \underline_ <3>= 0 \\ \end $$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

$$ \begin\underline_<1>+ \underline_<2>— \underline_<3>=0 \\ \underline_<1>+(-1+1j)\cdot \underline_<2>=0.7071+0.7071j \\ (1-1j)\cdot \underline_<2>+ j \cdot \underline_<3>=0 \\ \end $$

Решим систему уравнений и получим искомые токи:

$$ \underline_ <1>= 0.4243+0.1414j\space\textrm <А>$$
$$ \underline_ <2>= 0.1414-0.4243j\space\textrm <А>$$
$$ \underline_ <3>= 0.5657-0.2828j\space\textrm <А>$$

Рекомендуемые записи

На сайте появилась программа для расчёта установившихся режимов электрических цепей по законам ТОЭ. На настоящий…

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной…

Наряду с решением электрических схем по законам Кирхгофа и методом контурных токов используется метод узловых…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Источник

Adblock
detector